from langchain_core.documents import Document
from langchain_nebius import NebiusEmbeddings, NebiusRetriever
# Create sample documents
docs = [
Document(
page_content="Paris is the capital of France", metadata={"country": "France"}
),
Document(
page_content="Berlin is the capital of Germany", metadata={"country": "Germany"}
),
Document(
page_content="Rome is the capital of Italy", metadata={"country": "Italy"}
),
Document(
page_content="Madrid is the capital of Spain", metadata={"country": "Spain"}
),
Document(
page_content="London is the capital of the United Kingdom",
metadata={"country": "UK"},
),
Document(
page_content="Moscow is the capital of Russia", metadata={"country": "Russia"}
),
Document(
page_content="Washington DC is the capital of the United States",
metadata={"country": "USA"},
),
Document(
page_content="Tokyo is the capital of Japan", metadata={"country": "Japan"}
),
Document(
page_content="Beijing is the capital of China", metadata={"country": "China"}
),
Document(
page_content="Canberra is the capital of Australia",
metadata={"country": "Australia"},
),
]
# Initialize embeddings
embeddings = NebiusEmbeddings()
# Create retriever
retriever = NebiusRetriever(
embeddings=embeddings,
docs=docs,
k=3, # Number of documents to return
)