from langsmith import traceable
from langsmith.run_helpers import get_current_run_tree
from openai import Client
openai = Client()
@traceable
def format_prompt(subject):
run = get_current_run_tree()
print(f"format_prompt Run Id: {run.id}")
print(f"format_prompt Trace Id: {run.trace_id}")
print(f"format_prompt Parent Run Id: {run.parent_run.id}")
return [
{
"role": "system",
"content": "You are a helpful assistant.",
},
{
"role": "user",
"content": f"What's a good name for a store that sells {subject}?"
}
]
@traceable(run_type="llm")
def invoke_llm(messages):
run = get_current_run_tree()
print(f"invoke_llm Run Id: {run.id}")
print(f"invoke_llm Trace Id: {run.trace_id}")
print(f"invoke_llm Parent Run Id: {run.parent_run.id}")
return openai.chat.completions.create(
messages=messages, model="gpt-4o-mini", temperature=0
)
@traceable
def parse_output(response):
run = get_current_run_tree()
print(f"parse_output Run Id: {run.id}")
print(f"parse_output Trace Id: {run.trace_id}")
print(f"parse_output Parent Run Id: {run.parent_run.id}")
return response.choices[0].message.content
@traceable
def run_pipeline():
run = get_current_run_tree()
print(f"run_pipeline Run Id: {run.id}")
print(f"run_pipeline Trace Id: {run.trace_id}")
messages = format_prompt("colorful socks")
response = invoke_llm(messages)
return parse_output(response)
run_pipeline()